Minggu, 29 September 2013

Kuartil, Rata-rata Ukur dan Rata-Rata Harmonik


1.               Kuartil
            Dalam dunia statistik, yang dimaksud dengan kuartil ialah titik atau skor atau nilai yang membagi seluruh distribusi frekuensi ke dalam empat bagian yang sama besar, yaitu masing masing sebesar ¼ N. jadi disini akan kita jumpai tiga buah kuartil, yaitu kuartil pertama (Q1), kuartil kedua (Q2), dan kuartil ketiga (Q3). Ketiga kuartil inilah yang membagi seluruh distribusi frekuensi dari data yang kita selidiki menjadi empat bagian yang sama besar, masing-masing sebesar ¼ N, seperti terlihat dibawah ini
            Jalan pikiran serta metode yang digunakan adalah sebagaimana yang telah kita lakukan pada saat kita menghitung median. Hanya saja, kalau median membagi seluruh distribusi data menjadi dua bagian yang sama besar, maka kuartil membagiseluruh distribusi data menjadi empat bagian yang sama besar. Jika kita perhatikan pada kurva tadi, maka dapat ditarik pengertian bahwa Q2 adalah sama dengan Median(2/4 N=1/2 N).
            Untuk mencari Q1,Q2 dan Q3 digunakan rumus sebagai berikut:
·        untuk data tunggal
            Q­­­­­n = 1 + ( n/4N-fkb)
                                    fi
·         untuk data kelompok
Qn = 1 + (n/4N-fkb)x i
                        Fi
Qn = kuartil yang ke-n. karena titik kuartil ada tiga buah, maka n dapat diisi dengan bilangan: 1,2, dan 3.
1 = lower limit ( batas bawah nyata dari skor atau interval yang mengandung Qn).
N= Number of cases.
Fkb= frekuensi kumulatif yang terletak dibawah skor atau interval yang mengandung Qn.
Fi= frekuensi aslinya (yaitu frekuensi dari skor atau interval yang mengandung Qn).
i= interval class atau kelas interval.

Catatan: - istilah skor berlaku untuk data tunggal.
  - istilah interval berlaku untuk data kelompok.
Berikut ini akan dikemukakan masing-masing sebuah contoh perhitungan kuartil ke-1, ke-2, dan ke-3 untuk data yang tunggal dan kelompok.
1). Contoh perhitungan kuartil untuk data tunggal
            Misalkan dari 60 orang siswa MAN Jurusan IPA diperoleh nilai hasil EBTA bidang studi Fisika sebagaimana tertera pada table distribusi frekuensi berikut ini. Jika kita ingin mencari Q1, Q2, dan Q3 (artinya data tersebut akan kita bagi dalam empat bagian yang sama besar), maka proses perhitungannya adalah sebagai berikut:

Table 3.11. Distribusi frekuensi nilai hasil Ebta dalam bidang studi fisika dari 60 orang siswa MAN jurusan ipa, dan perhitungan Q1, Q2, dan Q3.
Nilai (x)
F
Fkb

46
45
44
43
42
41
40
39
38
37
36
35
2
2
3
5
F1 (8)
10
F1 (12)
F1 (6)
5
4
2
1
60= N
58
56
53
48
40
30
18
12
7
3
1

A.     Titik Q1= 1/4N = ¼ X 60 = 15 ( terletak pada skor 39). Dengan demikian dapat kita ketahui: 1= 38,50; fi = 6; fkb = 12
Q1 = 1 + ( n/4N-fkb) = 38,50 +(15-12)
                        Fi                           6
= 38,50 +0,50
= 39
B.     Titik Q2= 2/4N = 2/4 X 60 = 30 ( terletak pada skor 40). Dengan demikian dapat kita ketahui: 1= 39,50; fi = 12; fkb = 18
Q2 = 1 + ( n/4N-fkb) = 39,50 +(30-18)
                         Fi                            12
= 39,50 +1,0
= 40,50
C.     Titik Q3= 3/4N = 3/4 X 60 = 45 ( terletak pada skor 42). Dengan demikian dapat kita ketahui: 1= 41,50; fi = 8; fkb = 40
Q3 = 1 + ( n/4N-fkb) = 41,50 +(45-40)
                        Fi                                  8
= 41,50+ 0,625
= 42,125
2). Contoh perhitungan kuartil untuk data kelompok
            Misalkan dari 80 orang siswa MAN jurusan IPS diperoleh skor hasil EBTA dalam bidan studi tata buku sebagaimana disajikan pada tabel distribusi frekuensi beikut ini ( lihat kolom 1 dan 2). Jika kita ingin mencari Q1, Q2, dan Q3, maka proses perhitungannya adalah sebagai berikut:
A.     Titik Q1= 1/4N = ¼ X 80 = 20 ( terletak pada interval 35-39). Dengan demikian dapat kita ketahui: 1= 34,50; fi = 7; fkb = 13, i= 5.
Q1 = 1 + ( n/4N-fkb)  Xi = 34,50 +(20-13)  X5
                        Fi                                 7
= 34,50 +5
= 39,50
B.     Titik Q2= 2/4N = 2/4 X 80 = 40 ( terletak pada interval 45-49). Dengan demikian dapat kita ketahui: 1= 44,50; fi = 17; fkb = 35, i= 5.
Q1 = 1 + ( n/4N-fkb)  Xi = 44,50 +(40-35)  X5
                        Fi                                    17
= 44,50 +1.47
= 45,97
C.   Titik Q3= 3/4N = 3/4 X 80 = 60 ( terletak pada interval 55-59). Dengan demikian dapat kita ketahui: 1= 54,50; fi = 7; fkb = 59, i= 5.
Q1 = 1 + ( n/4N-fkb)  Xi = 54,50 +(55-59)  X5
                        Fi                                   7
= 54,50 + 0,71
= 55,21
Tabel 3.12. distribusi frekuensi skor-skor hasil EBTA bidang studi tata buku dari 80 orang siswa man jurusan ips, berikut perhitungan Q1,Q2, dan Q3.
Nilai (x)
F
Fkb
70-74
65-69
60-64
55-59
50-54
45-49
40-44
35-39
30-34
25-29
20-24
3
5
6
7
7
17
15
7
6
5
2
80
77
72
66
59
52
35
20
13
7
2
Total
80= N
-

Diantara kegunaan kuartil adalah untuk mengetahui simetris (normal) atau a simetrisnya suatu kurva. Dalam hal ini patokan yang kita gunakan adalah sebagai berikut:
1). Jika Q3-Q2 = Q2- Q1 maka kurvanya adalah kurva normal.
2). Jika Q3-Q2 > Q2- Q1 maka kurvanya adalah kurva miring/ berat ke kiri(juling positif).
3). Jika Q3-Q2 < Q2- Q1 maka kurvanya adalah kurva miring/ berat ke kanan(juling negatif).

2.     Rata-rata Ukur (Geometric Mean)
a.  Pengertian  Nilai Rata-rata Ukur
Nilai rata-rata ukur dari sekelompok bilangan ialah hasil perkalian bilangan tersebut, diakar pangkatkan sebanyaknya bilangan itu sendiri.
Rata rata ukur dipakai untuk menggambarkan keseluruhan data khususnya bila data tersebut mempunyai ciri tertentu yaitu banyaknya nilai data yang satu sama lain saling berkelipatan sehingga perbandingan tiap dua data yang berurutan tetap atau hampir tetap. Bila suatu kelompok data mempunyai ciri seperti ini maka rata rata ukur akan lebih baik dari pada rata rata hitung.
b.   Cara menghitung nilai rata-rata ukur
Rata rata ukur G dari kelompok data Xi , X2 , X3 , …Xn didefinisikan sebagai berikut
·         Untuk Data Tidak Berkelompok
                       n
G =    √ ( X1, X2, X3….Xn )                Untuk Data yang Kecil
                                     ( ∑ log X )
G = antilog ( ------------------- )     Untuk Data yang Besar
                                          ∑ n
·         Untuk Data Berkelompok
                                    ( ∑ f . log X )
G = antilog ( ------------------- )
                                           ∑  f
Contoh: Tentukan rata rata ukur (GEOMETRIC MEAN)  data 2, 4, 8
Jawab:
  n = 3
Log 2 = 0,3010
Log 4 = 0,6021
Log 8 = 0,9031
Maka Log 2 + Log 4 + Log 8 = 0,3010 + 0,6021 + 0,9031 = 1,8062
                                       ( ∑ log X )
G = antilog ( ------------------- )            
                                            ∑ n
                                       ( Log 2 + Log 4 + Log 8 )
G = antilog ( ------------------------------------- )             
                                                        3
                                        ( 1,8062 )
G = antilog ( ------------------ )  =  antilog 0,6021 = 4  
                                              3

3.    Rata-Rata Harmonik

Rata-rata harmonik dari suatu kumpulan data x1, x2, …, xn adalah kebalikan dari nilai rata-rata hitung (aritmetik mean). Secara matematis dapat dinyatakan dengan formula berikut:

Secara umum, rata-rata harmonic jarang digunakan. Rata-rata ini hanya digunakan untuk data yang bersifat khusus. Misalnya,rata-rata harmonik sering digunakan sebagai ukuran tendensi sentral untuk kumpulan data yang menunjukkan adanya laju perubahan, seperti kecepatan.
a. Rata-rata harmonic untuk data tunggal
                                                       
Contoh 1:Si A bepergian pulang pergi. Waktu pergi ia mengendarai kendaraan dengan kecepatan 10 km/jam, sedangkan waktu kembalinya 20 km/jam. Berapakah rata-rata kecepatan pulang pergi?

Jawab:Apabila kita menghitungnya dengan menggunakan rumus jarak dan kecepatan, tentu hasilnya 13.5 km/jam!
Apabila kita gunakan perhitungan rata-rata hitung, hasilnya tidak tepat!

Pada kasus ini, lebih tepat menggunakan rata-rata harmonik:
b. Rata-rata Harmonik untuk Distribusi Frekuensi:



Contoh 2:
Berapa rata-rata Harmonik dari tabel distribusi frekuensi pada
Contoh 3 pada Tendensi Sentral: Mean!

Jawab:
Kelas ke-
Nilai Ujian
fi
xi
fi/xi
1
31 – 40
2
35.5
0.0563
2
41 – 50
3
45.5
0.0659
3
51 – 60
5
55.5
0.0901
4
61 – 70
13
65.5
0.1985
5
71 – 80
24
75.5
0.3179
6
81 – 90
21
85.5
0.2456
7
91 – 100
12
95.5
0.1257
8
Jumlah
80

1.1000


 DAFTAR PUSTAKA:
http://fisikaiain2010.blogspot.com/2012/06/kelompok-6-statistik.html

Tidak ada komentar:

Posting Komentar